If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=-16t^2+64t
We move all terms to the left:
40-(-16t^2+64t)=0
We get rid of parentheses
16t^2-64t+40=0
a = 16; b = -64; c = +40;
Δ = b2-4ac
Δ = -642-4·16·40
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{6}}{2*16}=\frac{64-16\sqrt{6}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{6}}{2*16}=\frac{64+16\sqrt{6}}{32} $
| (x+2)2+2x=4 | | 3b-12=31-b | | 3x2+18=-3 | | 2(x+3)=3x(x-5) | | 7x2+15x=0 | | 2x2+34x=0 | | a2+22a=0 | | T(n)=3*2^n | | -x2+17x=0 | | -x^2+17x=0 | | 5x+10=3x+27 | | 5x-2(x-3)=33 | | 10x+9=54 | | 3m+2m+5=40 | | 29=4y-15 | | 6(5-2x)=6(x-8) | | 6x-(2x-10)=5 | | 9x+8=8x+2 | | 11x-8=9x+12 | | 2x-2(x-1)=10 | | 4x+12(3-2+4)=2x | | 0.7x=16 | | 3x+2=-6x+12 | | x3=312 | | 1.1q-9=-3.5 | | x^2=0.01-x | | 7-5/8x=-3 | | x/2+2+2=6 | | 10-2(x+2)=6 | | 5x+12=-6-x | | y/25=5 | | |4n+1|+10=4 |